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PAPER NO. 21

THE EFFECT OF INITIAL CURVATURE ON THE DYNIAMIC RESPONSE

OF THE SPINE TO AXIAL ACCELERATION

T.F. Li, S.H. Advani, and Y-C. Lee

Department of Theoretical and Applied Mechanics
West Virginia University, Morgantown, West Virginia

. ABSTRACT

A majority of the studies on the dynamic response of the hl.man
torso have considered uni-axial models wherein tho initial curvature
of the spine is ignored. A detailed discrete parameter vertebral
response model incorporating the variable geometry of the spine and
subjected to pilot ejection simulated impact conditions has been
recently investigated by Orne and Liu. In this work, a simple con-
tinuum representation of the spine is formulated and the resulting
boundary value problem is solved for the axial and lateral (bending)
dynamic response. The assumed model is a constant cross-section,
sinusoidally curved, elastic beam with an end mass subjected to an
axial acceleration at the other end. The effects of transverse shear
and rotational inertia are ignored in the model. The equation govern-
ing axial displacement is a non-homogeneous wave equation subjected
to non-homogeneous boundary conditions. The governing approximate
equation for the lateral deflection is a non-linear second order dif-
ferential equation with variable coefficients. Short time solutions
for these equations are obtained to demonstrate the effect of initial
curvature on the spinal dynamic response. Numerical results indicate
that the dynamic bending stress is significant in comparison to the
axial dynamic stress.
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LIST OF SYMBOLS
Dimensional Quantity Physical interpretation

A effective spinal cross-sectional area

C =compressional wave speed

E instantaneous Young's modulus

I =Ar2 principal moment of inertia

M concentrated head and upper torso mass

r effective radius of gyration about
spinal bending axis

lumped effective torso and spine mass
density

Non-dimensional To convert to Physical Interpretation
Quantity dimensional form

- multiply by

a c 2 /r forcing acceleration

L r effective spinal length

P AE axial force

t r/c time

u r axial column displacement

x r axial co-ordinate

y(x,t) r total column bending displacement

Y(t) r time function

Y0 (x) r initial column bending displacement

Y0 r maximum column eccentricity

X= M/PAr = AL mass parameter

.5 5
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INTRODUCTION

Crew member protection from hostile aerospace environments is a
biomedical engineering problem of grave concern. Rheologica. and
structural response models of human body system components have re-
ceived particular attention towards defining limiting injury thresh-
olds associated with the governing mechanism(s) of injury. Of special
interest is the modelling of the vertebral column response to transient
headward accelerations along the spinal axis (+ G ejection mode).S. z
Reported data on vertebral fractures resulting from pilot ejection
reveals that a majority of these fractures occur between T8 and Li.

* Several discrete parameter and continuum models of the human torso
ranging in complexity and scope have established the desirability of
analytical representation of the response variable defining injury.
A review of pertinent investigations can be found in studies by von
Gierke [1], Roberts, et al [2], and Orne and Liu [31. Selected contri-
butions are indicated below.

Uniaxial spring mass characterizations of the human torso under
impact have been examined by Latham L41, Payne [51, Stech [6], and
others [7]. A more refined model described by an eight degree of free-
dom damped spring mass system has been studied by Toth [8]. Recently,
Orne and Liu [3] have investigated a detailed multi-mass representation
of the torso incorporating the effects of spinal disk axial, bending,
and shear deformations in addition to the variable vertebral geometry.
The discrete parameter models involve the (simultaneous) solution of
ordinary differential equation(s) formulated from the conditions of
dynamic equilibrium. Research on continuum descriptions of the torso
includes one dimensional wave propagation models considered by Hess
and Lombard [9], Liu and Murray [10], Liu [11], Terry and Roberts [121,
and Murray and Tayler [131. These uniaxial continuum models vary in
their degree of sophistication depending on the boundary conditions
(head mass), and constitutive relations (linear/non-linear, elastic/
visco-elastic). It is noteworthy that experimental results and ana-
lytical solutions comparing the rectangular pulse response of an
elastic rod-mass system with that of an equivalent spring mass approxi-
mation have been obtained by Seigel and Waser [14]. Their work indi-
cates that the rod-mass system experiences "significantly larger" forces
for short pulse duration and/or end mass magnitude.

In this paper, we consider a simplified continuum dynamic model
representation of the curved spine with the torso mass uniformly dis-
tributed along its length. The idealized model is a constant cross-
section, sinusoidally curved, elastic column with end mass subjected
to a uniform acceleration at the other end. The influence of trans-
verse shear and rotational inertia is ignored in the model. In addition,
the effects of moments arising from the head-torso mass eccentricity
and the external support-restraint system interaction are not included
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in the analysis. The bending stress resulting from these external force
and moment intensities can be superposed on the selected basic model
under study. Experimental work by Vulcan, King and Nakanmra (15] inai--
cates the relative importance of support-restraint systems and head-
torso rotation on bending stresses in the vertebral beam-column. The
motivation for the assumed model stems from the results of small animal
+ G impact experiments conducted with flat back and contoured support-
restraint systems [16,17]. The large incidence of vertebral fractures
and paralysis for the flat back system evidently supports the consider-
ation of initial spinal curvature.

As a problem in theoretical mechanics, the non-linear dynamic
response of a simply supported column with sinusoidal initial curvature
and a constant velocity forcing function at one end has been studied by
Hoff [18], Sevin [19], and Dym and Rasmussen ..,1. A comprehensive study
of the curved dynamic beam response under constant velocity end loading
with combinations of' simply supported and clamped boundary conditions
has been conducted by Archer and Das [21]. They demonstrate an improved
numerical stability of their finite difference solution when the effects
of beam transverse shear and rotational inertia are included. Here, the
equations and associated boundary conditions governing the axial and
bending spinal column motion are formulated and uncoupled. The non-
homogeneous wave equation for the axial motion is solved and an approxi-
mate equation for the bending response time variable is obtained by
using the Ritz-Galerkin procedure. Short time solutions for the spinal
response are obtained by the Runge-Kutta method to demonstrate the
importance of initial curvature in considering the spinal colunu,
response.

FORMULATION OF THE BOUNDARY VALUE PROBLEM

The equations governing motion of the basic spinal model (Fig. 1)
can be derived by use of Hamilton's principle. The Lagrangian, using
this variational energy formulation, considers the strain and kinetic
energies of the column and the work done by the axial force. The non-
dimensional equations, in terms of the coupled generalized co-ordinates
y(x,t) and u(x,t) with respect to an inertially defined co-ordinate
system are:

(i) An equation governing the bending motion of the column

y 'fil + (P'y' + Py'") + y = Y0" " (1)

(ii) An equation governing compressive motion of the column

-Pt = u (2)

The non-dimensional axial force P(x,t) in equations (1) and (2) is
defined by

p 1u + (yt)2 (yI)2
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In the preceding equations primes and dots denote differentiation with
respect to the non-dimensionalized space and time variables respectiv-
ly. The influence of column transverse shear and column, torso-head
rotational inertia is not considered in these equations. A more gen-
eral representation of equations (1), (2), and (3) is currently under
study at Technology Incorporated using the finite difference method K221.

The boundary and initial conditions for the assumed model are

u(O,t) - at 2  , P(L,t) = Xu(L,t) ( 4 a)

y(O,t) = y(Lt) = y"l(Ot) = y"(L,t) = 0 (4b)

u(xO) -(x,o) - r(x,O) - 0 , and y(x,O)= yo(X) (4c)

AXIAL DISPLACEMENT RESPONSE SOLUTION

Equations (2) and (3) can be re-written in the form

u - u" - f'(xt) (5)
i 1 )2 -(y,)2 .

with f(x,t) = L [(y ]

The solution to equation (5) can be obtained by considering (i)
a homogeneous wave equation subjected to non-homogeneous boundary con-
ditions and (ii) a non-homogeneous wave equation with ho.iogeneous
boundary conditions. We therefore write

u = uH + up (6)

where u. satisfies the equation

u -uo (7)

with the boundary and initial conditions

(ot) , uA(L,t) :-Xu(L,t) - f(L,t),uH(x,O)

= H(x,o)= 0

and Up satisfies the equation

t- u, = f t (x,t) (8)

with homogeneous boundary and initial conditions

up(O,t) = u (L,t) = u(•,O) = P(Xo) 0 0

We obtain the solution to equation (7) in a manner similar to that of
Liu and Murray [10] with the modification expressed by the term f(L,t)
in the boundary conditions. The resulting solution after use of the
Laplace transform method is
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V

) (t - x)2 H~t X- ) + [(t - 2nL - x)2 l(t - 2nL - x)
UH( 't (t x) 2 H(n=l [

- (t - 2nL + x) 2  H(t - 2nL + x)] + (_-, i e)m nC

• (t - 2nL - x) 2 H(t - 2nL - x) - (T - 2nL + x) 2 H(T - 2nL + x)]•

(t - )m- e-(t-)X dT

L (-_i)n f(Lt + x - (2n + 1)L) - f(LT - x - (2n + I) L

L-1 [~)~-XL_ 1 [112s dT(9

where L-1 denotes the inverse Laplace transform and

C(s) = (1x- s)/(l + xs)

The solution to the non-homogeneous equation (8) can be obtained
in the form

up 4 • sin n1-Y f(L,t) sin nf
n=1,3,5

n L nnx n.f n__ L f(x,r) cos r dx} sin 1-- (t - T) di (10)
2L 0 2

SOLUTION FOR THE BENDING RESPONSE

Equation (1) governing the column lateral response y(x,t) is
simplified by selecting the initial column deviation yo(x) from the
vertical axis to be sinusoidal. Additionally, in view of boundary con-
ditiona ( 4b) we ;ssume that the column responds in the first spatial
mode. We therefore ta1,

y(x,O) - yo(x) = Y0 sin (wx/L) (11)

y(xt) - Y(t) sin (x/iL) (12)

559



Substituting equations (3), (6), (9), (10), (ii) and (12) in equation
(1) and using the Ritz-Galerkin averaging method, we obtain after con-
siderable simplification a non-linear, variable coefficient, second
order differential equation governing Y(t) . It is

i(t) )4 [y - yoN + 31(y2 _y2) y + (L4 2At.

;rL Y ,n(n2 -1 6 )2 n G(t) 0 (13)

n=1, 3

where

A(t) = - sin2 -- x+ sinL-cos dx
0 0

ft n

Gn (t) = (y 2 - y2) sin "" (t - T) dT

and PH is the axial force derived from the homogeneous wave equation.

Asymptotic solutions to second order non-linear differential
equations with variable coefficients of the type designated by equation
(15) have been investigated by Kuzmak (23). However, these solutions
are valid for slowly varying time coefficients. A power series solution
to (13), with physical constants represented by spinal constitutive and
geometric properties and a forcing acceleration (1) of 20 G, exhibited
numerical instability following a time duration of 15 milliseconds. An
improved technique of solution using the Runge-Kutta method in conjunc-
tion with an iterative procedure was finally used to yield the transient
model response.

ASSUMED SPINAL CONSTITUTIVE AND GEOMETRIC PROPERTIES

An extensive literature review revealed that available data is in-
adequate for characterizing the spinal response in the short time domain.
Data surveyed included results on spinal compressive wave propagation
experiments and analysis [6,7,22], natural axial frequency data on spinal
response (1,7,24], and compress'on and bending tests on human vertebrae
and disks [22,251. The wide range of reported results is evidenced by
comparing (i) a calculated compressive wave velocity of 100 ft/sec ob-
tained by Hess and Lombard (9] versus an experimentally determined spinal
cadaveric velocity of 191 ft/sec (221 and (ii) a first resonance axial

frequency of around 10 Hz for the spine-upper torso mass [1] as compared
to 441 Hz indicated in another study (7). The static compressive proper-

ties of vertebrae wid disks are well docunented in the literature. Ex-

periments conducted at Technology Incorporated (221 on the compressive

response of human vertebrae and disks, using linear visco-elastic theory,

indicate that "%he average initial elastic udbluz"*w',tr 5cta of Cne
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plus one disk is 7428 psi. The corresponding reported values for verte-
brae and disks are 10,029 psi and 2552 psi respectively [22]. Prelimi-
nary results from static moment-curvature tests on human cadaveric
spines reveal that its flexural rigidity El ranges from 6 x 103 to101 lb-in2 [25].

Based on the data and literature reported in the prece~ding para-
graph, a compromised set of constitutive and geometric constants was
selected. The values chosen for the assumed model are:

Effective spinal length (L-4 to Cervical Vertebrae) L = 18 in

Effective cross-section of area A = !.3 in 2

Effective radius of gyration about bending axis r = 0.527 in

Spinal column eccentricity Y' = 2 in

Head and upper torso concentrated mass M = 0.055 lb sec2 /in

Non-dimensional mass parameter OAT M =A 0.33

Instantaneous elastic modulus E = 10,000 psi

The undamped compressive wave velocity and axial spinal frequency
with the above data are 120 ft/sec and 13.5 Hz respectively. The
spinal cross-sectional area and radius of inertia take into account
the added contribution of the supporting vertebral structure. In
addition, based on the "hardening" strain rate characteristics of most
biolngical materials, the assumed instantaneous model elastic modulus
is chosen to be larger than reported static values.

DISCUSSION AND NUMERICAL RESULTS

Before proceeding to illustrate the results of the numerical compu-
tations, a discussion of the assumed model and its inherent limitations
will be presented. The selection of a simple half sine wave for describ-
ing the initial spinal configuration deserves special mention. Based on
geometric data, the sine wave adequately defines the rpinal curvature
from the cervical vertebrae to the upper lumbar region. The results or
Orne and Liu [3] demonstrate a vanishing bending moment for durations up
to 90 milliseconds in the vicinity of the L-3 region, thereby justifying
the assumed deflection form. In addition, their results indicate
the axial force remains relatively constant in the lumbar region for a
specified instant. The continuum model, being an initial attept tovards
demonstrating the effect of spinal curvature, neither includes the
bending moment contribution of the head-torso mass eccentricitieu nor the
influence of the support--restraint system interaction. These effects can
be introduced by refining the model to a beam-colmn= subjected to exter-
nal distributed dynamic mocents and lateral forces (incorpcrated as a
rotational inertia term uJz and external forcing term q•,t) in
the beam equation). The ef.ýCx e rasa terms participating in the bening
and axial modes would also require zodificaticn in this model.

Nuzerical work vas performed on q.n IR 36!., Xoel 75 ccp;uter. Thie
.nge-Fulta routine was combined with an iterative procedure to compute
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the lateral deflection. Figure 2 illustrates the mid-span lateral de-
flection time history computed from equation (13) for acceleration load-
ings of a = 10 G and 20 G. The corresponding total compressive axial
displacement is also indicated in this figure. This axial displacement
is a superposition of solutions obtained from (i) a homogeneous wave
equation (7) with non-homogeneous boundary and initial conditions and
(ii) a wave equation ( 8) with a forcing acceleration term and homo-
geneous boundary and initial conditions. Since the support-restraint
reactions are ignored in the analysis, the results are assumed to be
relevant up to a time duration of 40 milliseconds. Figure 3 compares
the axial force computed for the uniaxial and axial-bending response
models at the load and head ends. The significantly reduced dynamic
response factor at the forcing end resLlts from the curvature terms.
The head end axial force is also reduced and tends to be tensile for
larger elapsed times. The maximum compressive fiber stress time history
at the anterior mid-span obtained from the relation a = -(P/A + Md/I)
is shown in Fig. 4. The assumed initial deflection forr presupposes a
maximum bending contribution at the mid-span (T-8 or T-9) which increases
with time in the interval considered. This is in contrast with results
which indicate a reversal of sign in the bending moment around this
neighborhood [3]. The bending moment stress contribution due to the
initial curvature is about 30 percent at t = 40 milliseconds. This
effect would be further enhanced if the moments arising from the rotation
of the head and movement of the torso were considered. The instantaneous
elastic response solutions in the figures represent upper bounds for the
visco-elastic vertebral model. However, the SrL time response for the
elastic and damped models is almost identical.

A comprehensive discussion of the mechanisms associated with verte-
bral injury has been presented by Kazarian, et al 126]. Among these the
anterior lip fracture, the compression fracture, and the hyperextension
fracture are of particular interest. Coupled vith these findings is the
reported constitutive experimental data [27,28,29]. In the tests con-
ducted by Crocker and Higgipý. [293, the intervertebral disks exhibited
"hardening" stiffness propert es with increaring strain rate. Rovever,
their saximum compressive velocity rate of 14=/stc is well below the
corresponding rate encountered in vertebral ejection. Based on tht
general trend of available experimental resulta and the model analysis
represented by Figs. 2,3, an4 I the aechanisms of injury indicated above
lend themselves to analytical definition, For exmple, data on anterior
lip, compression ari h1perextension fractures can be correlated vith
computed dynamic values of compressive stress, tensile stress (due to
excessive beading monent) and/or be-nding and axil displacetents. The
spinous process fracture with di%;acent of '.he pedicle naw be inter-
preted by incorporating the effects of transvrae shear in the goverming
equation.

ce~cus WD~ MrOU MA,~TIO~S

The geometrically not-linear. cmitinu= oodel snaly-ed here a•vers
lome basic questions pertinent to the itterpretatian and pvTdiction of
vertebral coluan injury resulting from dynamic axial loods. Specifically.
the initial spinal curvature introiuces a ;cu.ed axial-lateral response.
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The axial force and stress distribution are significantly influenced by
the bending motion response as a result of the mechanical energy distri-
bution between the axial and bending modes.

It is recommended that spinal disk constitutive equations valid in
the impact range be determined from high strain rate compressive tests.
Finally, it is suggested that more complex continuum models be formu-
lated and the resulting boundary value problem numerically studied to
examine the detailed spinal stress response, the torso surface wave
response and the associated mechanical energies producing injury.
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